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Numerical simulations are performed of a compressible oxidizer gas laden with fuel
droplets. The carrier phase is considered in the Eulerian context and is simulated via
direct numerical simulation (DNS). The fuel droplets are tracked in the Lagrangian
frame and interactions between the two phases are taken into account in a realistic
two-way coupled formulation. It is assumed that combustion takes place in the
vapour phase, resulting in a ‘homogeneous’ reaction described by fuel + oxidizer →
products + energy. Several simulations are performed within the configuration of
low-Mach-number homogeneous shear turbulence to investigate the effects of the
mass loading ratio, the droplet time constant, the Damköhler number, and the heat
release coefficient. Initial mass loading ratios up to 0.8 and initial Stokes numbers
(based on the Kolmogorov time scale) of 1.23 and 2.46 are considered. The results
of these simulations along with those from non-reacting cases are utilized to analyse
the droplet size distribution, the fuel vapour, the oxidizer, and the reaction rate
and zone. An analysis of the statistics of the two-phase flow indicates that various
fields are accurately resolved and the assumptions invoked in the formulation of the
problem are satisfied. The mean evaporation rate (normalized with the initial mass
of the droplets) decreases with the increase of either the mass loading ratio or the
droplet time constant. It is shown that the droplet size distribution can be reasonably
approximated by a Gaussian probability density function (p.d.f.) for all of the cases.
The joint p.d.f. of the fuel vapour and the oxidizer mass fractions exhibits the features
of a premixed reaction. The values of the Taylor microscale of the fuel vapour and the
oxidizer are closer in the presence of the chemical reaction than in the evaporating but
non-reacting case. The reaction rate exhibits higher values in the regions of the flow
containing the droplets while experiencing moderate increase in the high-strain-rate
regions. The evaporation rate (per mass of the droplet) is smaller for larger droplets
but an opposite trend is observed for the reaction rate. The reaction zone tends to
align with the streamwise direction due to the effects of the mean flow on the droplets.
The alignment is enhanced with either the increase of the mass loading ratio or the
decrease of the droplet time constant, or the decrease of the Damköhler number. The
alignment of the fuel vapour and the oxidizer with the mean flow direction decreases
and increases, respectively, as a result of the chemical reaction.

1. Introduction
This paper presents some recent results from a systematic investigation undertaken

for modelling and numerical simulation of two-phase turbulent flows. The overall
objective of the investigation is to provide a better physical understanding and a
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more accurate treatment of the phenomenon of spray combustion which involves
the atomization of the fuel into droplets followed by their evaporation and chemical
reaction of the fuel vapour with the oxidizer. Due to the complexity of the problem,
however, it was necessary to adopt a systematic approach and to study each of the
above stages separately. Our previous studies (see Mashayek (1998a), and references
therein) along with those by others (discussed in recent reviews by McLaughlin 1994;
Eaton & Fessler 1994; Crowe, Troutt & Chung 1996) have been very helpful in
understanding the mechanism of dispersion and polydispersity in particle-laden flows,
without the added complexity of the chemical reaction.

The focus of this study is on numerical simulation of evaporating and reacting
droplets dispersed in a compressible carrier phase. The carrier phase is treated in
the Eulerian frame via direct numerical simulation (DNS) whereas the droplets are
tracked in a Lagrangian manner. Since this is the first attempt in implementing DNS
for the study of the reacting droplets dispersed in turbulent flows with two-way
coupling, the problem is formulated based on models and correlations which are
relatively well-established. It must be also emphasized that the term ‘DNS’ is used
here with the understanding that there are models involved in describing the coupling
between the two phases. Due to the presence of the droplets the flow is ‘heterogeneous’;
however, the combustion is assumed to take place in the vapour phase, thus rendering
a ‘homogeneous’ reaction. For the range of the mass loading ratios used here, this
assumption is reasonable (Chiu & Liu 1977). The flow considered is a homogeneous
shear turbulence at low Mach numbers to avoid the extra complexity in dealing with
shocklets.

Previous DNS of single-phase compressible flow has been carried out via both
high-order finite difference (Lee, Lele & Moin 1991) and spectral (Passot & Pouquet
1987; Kida & Orszag 1990, 1992; Blaisdell, Mansour & Reynolds 1993; Miura &
Kida 1995; Sarkar, Erlebacher & Hussaini 1991, 1992; Sarkar 1994) schemes. The
numerical methodologies used in these studies are on firm grounds and can be
extended to two-phase flows. The application of DNS to single-phase reacting flows
was pioneered by Hill (1979) and has been collected in several reviews (e.g. Givi
1989, 1994). The data generated by DNS have been used for assessing various models
(Givi & McMurtry 1988; McMurtry & Givi 1989; Gao & O’Brien 1991) and for
analysing the structure of the reaction zone (Nomura & Elgobashi 1992; Leonard
& Hill 1992; Swaminathan, Mahalingam & Kerr 1993, 1996). Both incompressible
(Jaberi et al. 1997) and compressible (McMurtry et al. 1986; Menon & Fernando
1990; Balakrishnan, Sarkar & Williams 1995) flows have been considered.

The extent of the previous DNS studies of two-phase flows is too broad to
be discussed here in detail. These previous studies are categorized based on flow
configuration and coupling between the phases in table 1. As expected, the isotropic
flows have been the subject of a large number of studies, due to their simple
configuration. The inhomogeneous channel flows have also received a great deal of
attention in the light of their extensive technological applications. The study of the
two-way coupling in these flows, however, has been only recently initiated by Pan
& Banerjee (1996). The homogeneous, anisotropic flows, due to their unsteady and
anisotropic nature, provide a convenient configuration to be used for modelling of
two-phase turbulent flows with both one- and two-way couplings. However, as table
1 indicates, the number of studies devoted to these flows is somewhat limited as
compared to the other flow configurations. The majority of the studies shown in table
1 consider the dispersion of solid particles only. It has been very recently that we
(Mashayek et al. 1997) studied dispersion and polydispersity of evaporating droplets
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DNS of
two-phase
flows

Homogeneous,
anisotropic

Inhomogeneous

Temporal
mixing
layer

Spatial
shear layer

Channel
flow

Plane
strain

Shear

Decaying

Homogeneous,
isotropic

1-way

2-way

1-way

2-way

1-way

2-way

1-way

1-way

2-way

1-way

1-way

2-way

Riley & Patterson (1974); Squires & Eaton
(1991a); Elghobashi & Truesdell (1992)

Elghobashi & Truesdell (1993)
Truesdell & Elghobashi (1994); Jaberi (1996)

Squires & Eaton (1991a,b); Wang & Maxey (1993)
Mashayek et al. (1997, 1998)

Taulbee et al. (1997); Mashayek et al. (1998)

Stationary
Squires & Eaton (1990); Jaberi (1996)
Maxey & Patel (1997); Maxey et al. (1997)
Mashayek (1998b); Mashayek & Jaberi (1999)

Masheyek (1998); Mashayek et al. (1998)

Mashayek et al. (1999)

McLaughlin (1989); Ounis et al. (1991, 1993)
Pedinotti et al. (1992); Brooke et al. (1992, 1994)
Chen & McLaughlin (1995); Chen et al. (1995)
Rouson & Eaton (1994); Rouson et al. (1997)

Pan and Banerjee (1996)

Samimy and Lele (1991)

Ling et al. (1997)

Miller & Bellan (1999)

Table 1. Previous works on the DNS of two-phase flows.

in one-way coupling with an incompressible carrier phase. Later, Mashayek (1998a, b)
relaxed some of the major assumptions invoked in the study of Mashayek et al. (1997)
by considering two-way coupling and compressible flows.

A major issue in the simulation of two-phase flows including consideration of
two-way coupling is the treatment of the effects of the dispersed phase on the carrier
phase as the former is considered in the Lagrangian frame and the latter is described
in the Eulerian context. In most of the applications, these effects are considered as
point sources concentrated at the centre of the particle. In the particle-source-in-
cell (PSI-Cell) method (Crowe, Sharma & Stock 1977) an Eulerian representation
for these Lagrangian point sources is obtained by adding the effects of all of the
particles residing inside a cell volume centred around each node. When implemented
in conjunction with spectral methods, this procedure is successful provided that the
number of particles is large and the spatial variation of the source term is small.
Otherwise, large changes in the magnitude of the source term from one node to
another may cause resolution problems. Recently, Maxey et al. (1997) adopted a
somewhat different approach which provides a more smooth distribution of the
source term within the simulation domain. This approach is also based on the point
source concept; however, in transforming from the Lagrangian frame to the Eulerian
the source term is distributed over an envelope centred at the particle position. The
envelope gives a local spatial average or filtering which can be controlled by adjusting
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the magnitude of a parameter. In the study of two-way coupling effects in a two-
phase channel flow where the density ratio is about 1, Pan & Banerjee (1996) argue
that in order to correctly account for the near-wall boundary conditions the particle-
generated velocity disturbance in the carrier phase should be directly considered.
However, it is mentioned that for unbounded flows with large density ratio the local
disturbance velocity field due to particles is not important and the PSI-Cell model
is successful. In the present work, we are dealing with homogeneous flows and large
density ratios in which the diameter of the droplets is much smaller than the cell size.
The PSI-Cell model is used for the calculation of the droplet source terms and it is
shown, via analysis of various spectra, that for the parameter values considered in this
study the pseudospectral method is able to accurately resolve all the Eulerian fields.

This work extends the study of Mashayek (1998a) on evaporating droplets in
homogeneous shear turbulence by including the chemical reaction between the fuel
vapour and an oxidizer carrier phase. The number of parameters involved in the
formulation of the problem is too large to allow a detail parametric study. Here,
we investigate the effects of the mass loading ratio, the droplet time constant, the
Damköhler number, and the heat release coefficient. The results of Mashayek (1998a)
and several preliminary simulations (not included here) have been used for choosing
the appropriate values for the parameters involved. While various aspects of the
two-phase flow can be investigated using the results of the simulations, since this
is the first DNS study on reacting droplets the main attention is focused on the
evolution of the reactants and the structure of the reaction zone. In the next section,
the formulation of the problem and the numerical methodology are described. An
overview of the simulations is provided in § 3 followed by the discussion of the droplet
size and scalar fields in § 4, and the reaction rate and zone in § 5. A summary and
some concluding remarks are furnished in § 6.

2. Formulation and methodology
This work deals with numerical simulation of homogeneous turbulent shear flow of

a compressible (oxidizer) gas laden with (fuel) droplets. For the dilute two-phase flow
considered here, it can be assumed that the chemical reaction is in the continuous
phase where the fuel vapour and the oxidizer are mixed (Chiu & Liu 1977). Since this
is the first numerical study of reacting droplets via implementation of DNS for the
continuous phase, we consider the single-step, second-order, irreversible reaction:

F + rO
Kfwd−→ (1 + r)P , (1)

where, F , O, and P represent the fuel vapour, the oxidizer, and the product, re-
spectively, Kfwd is the forward reaction rate constant, and r is the stoichiometric
coefficient.

The governing equations considered here are the compressible forms of the
continuity, momentum, and energy equations for the continuous phase coupled
with the Lagrangian equations for discrete droplets. Also, conservation equations
(in the Eulerian frame) are considered for the mass fractions of the fuel vapour
and the oxidizer. For simplicity, the fuel vapour and the product are assumed to
have the same molecular weight, viscosity, mass diffusivity, and specific heat as those
of the oxidizer gas. In this manner, the mixture of the gas, the fuel vapour, and the
product (hereinafter also referred to as the ‘carrier phase’ or the ‘fluid’) is treated as
one entity – the continuity, momentum, and energy equations are solved for the mix-
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ture. The specific enthalpies of the vapour and the product, however, are considered
to be different than that of the gas in order to satisfy the first law of thermodynamics.
The effects of the heat released by combustion and the phase-change energy are
accounted for in the description of the absolute enthalpies for various species. In the
following, we present the equations for the continuous and the dispersed phases along
with a discussion of the numerical treatment of these equations in a homogeneous
shear configuration.

2.1. Continuous phase

The carrier phase (composed of the oxidizer, the fuel vapour, and the product) is
considered to be a compressible and Newtonian fluid with zero bulk viscosity, and to
obey the perfect gas equation of state. The instantaneous density, velocity, pressure,
and temperature of the carrier phase are denoted by ρ, Ui, P , and T , respectively.
The instantaneous mass fractions of the fuel vapour and the oxidizer are denoted
by Yfv and Yox , respectively. With this nomenclature, the Eulerian forms of the non-
dimensional continuity, momentum, and energy equations for the carrier phase are
given by

∂ρ

∂t
+

∂

∂xj
(ρUj) =Sm, (2)

∂

∂t
(ρUi) +

∂

∂xj
(ρUiUj) = −∂P

∂xi
+

2

Ref

∂

∂xj

(
Sij − 1

3
∆δij

)
+Sui , (3)

∂ET

∂t
+

∂

∂xj
[Uj(ET + P )] =

1

(γ − 1)RefP rM
2
f

∂2T

∂xj∂xj

+
2

Ref

∂

∂xj

[
Ui

(
Sij − 1

3
∆δij

)]
+ CeDaρ2YfvYox +Se, (4)

and the conservation equations for the mass fractions are

∂

∂t
(ρYfv ) +

∂

∂xj
(ρYfvUj) =

1

RefSc

∂2Yfv

∂xj∂xj
− Daρ2YfvYox +Sm, (5)

∂

∂t
(ρYox ) +

∂

∂xj
(ρYoxUj) =

1

RefSc

∂2Yox

∂xj∂xj
− rDaρ2YfvYox . (6)

The total energy (ET ) is the summation of the sensible internal energy (ρCvT , where
Cv is the specific heat of the carrier phase) and the kinetic energy ( 1

2
ρUiUi) of

the oxidizer–vapour–product mixture. The equation of state is P = ρT/γM2
f . In the

above equations, ∆ = Uj,j is the dilatation (Ui,j = ∂Ui/∂xj), Sij = 1
2
(Ui,j +Uj,i) is the

rate-of-strain tensor, and δij is the Kroenecker delta function. All of the variables
are normalized by reference length (Lf), density (ρf), velocity (Uf), and temperature
(Tf) scales. The reference Reynolds and Mach numbers are Ref = ρfUfLf/µ and

Mf = Uf/
√
γRTf , respectively, and the Prandtl and Schmidt numbers are given

by Pr = Cpµ/κ and Sc = µ/ρΓ , respectively. In these definitions, the carrier-phase
variables µ, κ, Cp, γ, and R are the viscosity, the thermal conductivity, the specific
heat, the ratio of the specific heats, and the gas constant, respectively, and Γ is the
binary mass diffusivity coefficient. Assuming the same specific heat for the liquid and
the vapour, the specific enthalpies for the oxidizer, the liquid, the fuel vapour, and
the product are, respectively, hox = T , h` = T , hfv = T + Λ, and hp = T + Ω. Here,
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all the enthalpies are normalized by CpTf , Λ = Lv/CpTf and Ω = hfp/CpTf with Lv
and hfp denoting the latent heat of evaporation and the enthalpy of formation of the
product, respectively. Without any loss of generality, it is assumed that the enthalpy
of formation of the oxidizer and the fuel vapour is zero with respect to that of the
product. In (4)–(6), Ce = [Λ − (1 + r)Ω]/(γ − 1)M2

f and Da = ρfLfKfwd/Uf are the
heat release coefficient and the Damköhler number, respectively. The total energy
equation (4) is derived by assuming unity Lewis number (Le ≡ Sc/Pr = 1) (Turns
1996). The coupling of the carrier phase with the droplets is through the terms Sm,
Sui , and Se which describe the mass, momentum, and energy exchange between the
phases, respectively. The formulation of these terms and their calculation from the
discrete droplet fields are described in § 2.3.

2.2. Dispersed phase

The droplets are allowed to evaporate and are assumed to remain spherical with
diameter smaller than the smallest length scale of the turbulence and to exhibit an
empirically corrected Stokesian drag force. Both interior motions and rotation of the
droplets are neglected. The density of the droplets is considered to be constant and
much larger than the density of the carrier phase such that only the inertia, the drag,
and the gravity forces are significant to the droplet dynamics. As will be discussed in
§ 2.3, the numerical methodology used in this study to simulate the homogeneous shear
particle-laden flow is only applicable in the absence of gravity; therefore, buoyancy
effects are not considered. In addition, the droplet volume fraction is assumed to be
small and both droplet–droplet interactions and heat transfer due to radiation are
neglected. The droplets are tracked individually in a Lagrangian manner, and the
instantaneous droplet position, velocity, temperature, and mass are given by Xi, Vi,
Td, and md, respectively. With this nomenclature, the non-dimensional Lagrangian
equations describing the droplet dynamics are (Crowe et al. 1977)

dXi

dt
= Vi, (7)

dVi
dt

=
f1

τd
(U∗i − Vi), (8)

dTd
dt

=
f2

τd
(T ∗ − Td)− f3

τd
(Ys − Y ∗fv ), (9)

and
dmd
dt

= −f4τ
0.5
d (Ys − Y ∗fv ), (10)

where the superscript ∗ indicates the value of a carrier-phase variable at the droplet
location, and Ys is the vapour mass fraction at the surface of the droplet. It is noted
that the droplet equations are not (directly) affected by combustion, which takes place
in the carrier phase.

The non-dimensional droplet time constant (for Stokesian drag of a spherical
droplet) is τd = Refρdd

2
d/18, where dd and ρd are the droplet diameter and density,

respectively. The droplet variables are normalized using the same reference scales as
those used for the carrier-phase variables. The function f1 = (1 + 0.15Re0.687

d )/(1 +B)
in (8) represents an empirical correction to the Stokes drag due to droplet Reynolds
numbers of order unity and larger (Wallis 1969) and is valid for droplet Reynolds
numbers Red = Refρ

∗dd|U∗i − Vi| 6 1000. The transfer number B = (T ∗ − Td)/Λ
accounts for the evaporation effects, and for non-evaporating droplets B ≡ 0. The
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droplets are assumed ‘lumped’, so that there is no temperature variation within each
droplet. The first term on the right-hand side of (9) represents the rate of change of
the droplet temperature due to convective heat transfer with the carrier phase. The
factor f2 = Nu/3Pr represents a correlation for the convective heat transfer coefficient
based on an empirically corrected Nusselt number [Nu = (2 + 0.6Re0.5

d P r
0.33)/(1 +B)]

(Bird, Stewart & Lightfoot 1960). The second term on the right-hand side of (9)
represents the change in the droplet internal energy due to phase change. The
correlation f3 = ρ∗ShΛ/3Sc is a function of an empirically corrected Sherwood
number (Sh = 2 + 0.6Re0.5

d Sc
0.33) (Bird et al. 1960). For equivalent molecular weights

of the gas and the liquid, the vapour mass fraction at the surface of the droplet
is proportional to the partial pressure of the vapour. Using the Clausius–Clapeyron
relation, the surface mass fraction is described as

Ys =
PB

P
exp

[
γΛ

(γ − 1)TB

(
1− TB

Td

)]
, (11)

where TB is the boiling temperature of the liquid at the pressure PB . Finally, (10) gov-
erns the rate of mass transfer from the droplet due to evaporation, which is a function
of the vapour mass fraction difference at the droplet surface, the droplet time constant,
and the Sherwood number dependent correlation f4 = π(18/ρd)

0.5(ρ∗Sh/Re1.5
f Sc).

2.3. Formulation for homogeneous shear configuration

To configure a homogeneous shear flow suitable for DNS, a linear mean velocity
profile is applied to a zero mean turbulent velocity field. Therefore, the carrier-phase
instantaneous velocity is expressed as Ui = Sx2δi1 + ui, where ui is the carrier-phase
fluctuating velocity. The magnitude of the imposed shear is given by the amplitude of
the mean velocity gradient, S = ∂〈U1〉/∂x2 = const., where 〈 〉 indicates the Eulerian
ensemble average over the number of grid points. For homogeneous flows which
either start from isotropic initial conditions or develop to become independent of
the initial conditions, Blaisdell et al. (1991) show that the Favre-average fluctuating
quantity is the same as the Reynolds-average one. In this study we indicate the
fluctuating quantity with the same notation for both types of averaging; the type of
averaging is understood from the context.

In order to employ the Fourier spectral method, periodic boundary conditions must
be imposed. This is accomplished by solving the governing equations for fluctuating
velocities on a grid which deforms with the mean flow. This transformation has been
discussed in detail by Rogallo (1981) and Blaisdell, Mansour & Reynolds (1991) and is
only summarized here. A computational (deforming) coordinate system (x′i) is related
to the fixed (non-deforming) system through x′i = Qijxj where Qij = δij − Stδi1δj2 is
the transformation tensor for the present conditions. Performing the transformation
on (2)–(6) and dropping the prime on the coordinates, the governing equations in the
transformed coordinates become

∂ρ

∂t
+ Qji

∂

∂xj
(ρui) =Sm, (12)

∂

∂t
(ρui) + Qkj

∂

∂xk
(ρuiuj) = −ρu2Sδi1 − Qki ∂P

∂xk

+
Qkj

Ref

∂

∂xk

(
Qki

∂uj

∂xk
+ Qkj

∂ui

∂xk
− 2

3
∆δij

)
+Sui, (13)
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∂eT

∂t
+ Qkj

∂

∂xk
[uj(P + eT )] = −ρu1u2S +

S

Ref

(
Qk2

∂u1

∂xk
+ Qk1

∂u2

∂xk
+ S

)
+
Qki

Ref

∂

∂xk

[
uj

(
Qki

∂uj

∂xk
+ Qkj

∂ui

∂xk
− 2

3
∆δij + Sδi1δj2 + Sδi2δj1

)]
+

QkiQji

(γ − 1)RefP rM
2
f

∂2T

∂xk∂xj
+ CeDaρ2YfvYox +Se, (14)

∂

∂t
(ρYfv ) + Qkj

∂

∂xk
(ρujYfv ) =

QkiQji

RefSc

∂2Yfv

∂xk∂xj
− Daρ2YfvYox +Sm, (15)

∂

∂t
(ρYox ) + Qkj

∂

∂xk
(ρujYox ) =

QkiQji

RefSc

∂2Yox

∂xk∂xj
− rDaρ2YfvYox , (16)

where ∆ = Qjiui,j , and eT = ρCvT + 1
2
ρuiui.

In the absence of gravity or other external body forces and by assuming that
the droplets start from the same initial velocities as those of their surrounding fluid
elements, the droplet instantaneous velocity is (Simonin, Deutsch & Boivin 1995)
Vi = Sx2δi1 + vi, with vi denoting the droplet fluctuating velocity. By performing
ensemble averaging on the droplet instantaneous equations, it can be shown that the
dispersed phase is homogeneous within the deforming domain used to simulate the
carrier phase; thus, periodic boundary conditions can be applied to the dispersed
phase as well. The droplet position and momentum equations in the transformed
coordinates read

dXi

dt
= Qikvk, (17)

dvi
dt

=
f1

τd
(u∗i − vi)− v2Sδi1. (18)

The equations for the scalar quantities Td and md remain the same as those given by
(9) and (10).

The source/sink terms Sm, Sui, and Se appearing in (12)–(15) represent the
integrated effects of the droplet mass, momentum, and energy exchange with the
carrier phase. These Eulerian variables are calculated from the Lagrangian droplet
variables by volume averaging the contributions from all of the individual droplets
residing within the cell volume (δV = (δx)3, where δx is the node spacing) centred
around each grid point. In the deforming coordinates, these terms are expressed as

Sm = − 1

δV
nc∑ dmd

dt
, (19)

Sui = − 1

δV
nc∑[

mdf1

τd
(u∗i − vi) +

dmd
dt

vi

]
, (20)

Se = − 1

δV
nc∑[

1

(γ − 1)M2
f

d

dt
(mdTd)− Λ

(γ − 1)M2
f

dmd
dt

+
mdf1

τd
(u∗i − vi)vi +

dmd
dt

(
1
2
vivi
) ]
. (21)

In these equations, nc is the number of droplets within the cell volume and those cells
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Case reference Coup. Evap. Reac. Φm0 τd0 Da Ce Nd × 10−5

One-way 1-way No No — 1.0 — — 1.55
Non-evaporating 2-way No No 0.2 1.0 — — 3.10
Evaporating 2-way Yes No 0.2 1.0 — — 3.10
Base case 2-way Yes Yes 0.2 1.0 0.5 20 3.10
2Φm0b 2-way Yes Yes 0.4 1.0 0.5 20 6.20
4Φm0b 2-way Yes Yes 0.8 1.0 0.5 20 12.40
0.5τd0b 2-way Yes Yes 0.2 0.5 0.5 20 8.77
0.2Dab 2-way Yes Yes 0.2 1.0 0.1 20 3.10
1.5Ceb 2-way Yes Yes 0.2 1.0 0.5 30 3.10

Table 2. Cases considered in the study. For all of the cases Λ = 0.8, TB = 4, and r = 1.

with nc = 0 are assigned a zero value for each variable. A physical interpretation for
these source/sink terms may be found in Mashayek (1998a).

The computational methodology and the initialization are the same as those em-
ployed in Mashayek (1998a) and will not be detailed here. All the Eulerian fields
are calculated using a pseudospectral method and the Lagrangian droplet equations
are integrated using a second-order-accurate Adams–Bashforth method. To evaluate
the carrier-phase variables at the droplet location a fourth-order-accurate Lagrange
polynomial interpolation scheme is employed. The density and velocity fields are
initialized as random Gaussian, isotropic, and solenoidal fields in Fourier space. The
initial temperature field has no fluctuations and the initial pressure field is calculated
using the equation of state. The initial spectrum, for both density and velocity, has a
box-type shape with non-zero and constant value only for 8 < K < 16 where K is
the wavenumber. The droplets are randomly distributed in the flow at t = 0 with the
same velocity and temperature as those of their surrounding fluid. The initial mean
gas density and mean gas temperature are used as the reference scales for density
and temperature, respectively. The reference Mach number is Mf = 1; therefore, the
speed of sound based on the initial mean gas temperature is the reference scale for
the velocity. For all of the simulations Ref = 500, Pr = Sc = 0.7, γ = 1.4, S = 2, and
ρd = 500.

3. Overview of simulations
The number of parameters involved in the problem is too large to allow a detail

investigation of the effects of all of them. Further, the values of the parameters must
be chosen carefully such that all the Eulerian fields are resolved accurately and all the
assumptions used in the formulation are satisfied. Our previous study of evaporating
droplets (Mashayek 1998a) and the results of several preliminary simulations (not
included here) have been utilized for identifying the appropriate values for various
parameters. A listing of all the simulations considered in this study is provided in
table 2, with subscript ‘0’ referring to the initial value of a variable at t = 0. Here, we
consider a ‘base case’, indicated by boldface in the table, and then change the value of
one of the parameters in each of the following simulations. The parameters studied,
include the initial mass loading ratio (Φm0), the initial droplet time constant (τd0), the
Damköhler number (Da), and the heat release coefficient (Ce). Due to the particular
importance of the mass loading ratio, we consider two cases with Φm0 = 0.4 and 0.8.
The results of the reacting simulations are compared (where necessary) with the data
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from non-reacting cases with or without two-way coupling and/or evaporation. The
abbreviation used to refer to each case in the presentation of the results is shown in
the first column of table 2, where the subscript ‘b’ refers to the value of a parameter
in the base case. The droplets begin to evaporate (and react in reacting cases) at the
normalized time St = 2 (S is the magnitude of the mean shear) when the carrier-phase
turbulence kinetic energy starts to grow. The condition of one- or two-way coupling,
however, is imposed from t = 0 for corresponding cases. The number of droplets (Nd)
tracked in each case is also shown in the table. For all of the cases, Λ = 0.8, TB = 4,
r = 1, and PB is chosen to be the same as the initial pressure of the oxidizer gas.

The code has been carefully tested by performing the laminar flow test, and by
comparisons with the results of the previous work on single-phase compressible flow
by Blaisdell et al. (1991). The details of these tests are not presented here for brevity.
The code has also been previously used by Mashayek (1998a) for simulations of
non-evaporating and evaporating droplets in the same flow configuration as that
considered here. Further evidence for the accuracy of the code may be found in
Mashayek (1998a) where it is shown that the DNS results accurately satisfy the
kinetic and the internal energy equations for both phases. In the simulations, we have
considered the highest possible Reynolds number without jeopardizing the small-scale
resolution for all of the fields. The flow field (without the presence of the droplets)
used for this study has similar characteristics to those simulated by Blaisdell et al.
(1993) at the same grid resolution and initial r.m.s. turbulence Mach number of
0.2. However, the Reynolds number is smaller in this study as we are dealing with
evaporating droplets and so their sizes decrease to small values in time. As the sizes
of the droplets decrease they interact with smaller scales of the flow; therefore, it is
important to accurately resolve the small scales. All the simulations presented here
are performed on 963 collocation points with a time step of 2.5 × 10−3, and are
continued till the non-dimensional time St = 14. The CPU time (on a CRAY-T90) is
10.5 s per iteration for the reacting case in two-way coupling with 6.2× 105 droplets.
The memory required for this case is 56 Mw.

Before implementing the data generated by the simulations for detailed analysis,
it is important to ensure that various fields are sufficiently resolved and that the
assumptions invoked in the formulation of the problem are reasonably satisfied. A
well-established measure for small-scale resolution of the velocity field is the parameter
ηKmax , where η is the Kolmogorov length scale and Kmax is the highest wavenumber
resolved in the simulations. The value of ηKmax was monitored throughout the
simulations and it was always above 1.3 which is sufficiently larger than the (suggested)
acceptable limit of unity. The results show that the presence of the droplets results in
the increase of ηKmax , thus improving the resolution.

To further investigate the resolution at small scales, various spectra are considered
for the base case at St = 14. Due to the anisotropic nature of the homogeneous
shear flow various directional velocity energy spectra must be considered. However,
in order to demonstrate the resolution, it suffices to consider the variation of the
spectrum with the wavenumber magnitude only. This energy spectrum is shown in
figure 1(a) and indicates that the cascade of the energy is well established and the
energy content decreases with the increase of the wavenumber for large values of K .
The peak of the spectrum is around K = 7 whereas the highest resolved wavenumber
is Kmax = 45. The dissipation spectrum, Dv , in figure 1(b) shows that most of the
dissipation occurs at higher wavenumbers as expected. The power spectra for the
density and the temperature fluctuations of the carrier phase are shown in figure 1(c)
and (d), respectively. These spectra indicate that the thermodynamic fields are also
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Figure 1. Power spectra of (a) velocity, (b) dissipation, (c) density, and (d) temperature of the

carrier phase for the base case at St = 14.

resolved satisfactorily and there is no increase of the energy at high wavenumbers.
Further inspections of various spectra at other times and for other simulations also
indicated acceptable accuracy in resolving the small scales.

Next, we consider various spectra for the other two simulated Eulerian fields, i.e. the
mass fractions of the fuel vapour and the oxidizer. The resolution of the fuel vapour
mass fraction is particularly important as the droplets, which are the source of the fuel
vapour, are not uniformly distributed within the simulation domain due to the effects
of the preferential concentration. In figure 2(a) and (c) the spectra of the fluctuations
of the fuel vapour mass fraction at various times are shown for cases without and
with chemical reaction at Φm0 = 0.2, respectively. The droplets begin to evaporate at
St = 2 and, as expected, figure 2 indicates that during the early stages (St = 2.2)
most of the energy is concentrated at high wavenumbers. However, the situation is
improved rapidly such that at St = 3 the peak of the spectra has moved to K ' 15.
At long times, the peak of the spectra is around K ' 8. It is important to note that,
except for a very short time after the onset of evaporation, no increase of energy at
high wavenumbers is observed. The spectra in figure 2(a) and (c) indicate that there
could still be some room for further improvement of the resolution; however, the
resolution achieved is reasonably acceptable as there is enough separation between
the peak wavenumber and Kmax . Similar spectra are shown in figure 2(b) and (d)
for the fluctuations of the oxidizer mass fraction. As expected, these spectra exhibit
higher resolution throughout the simulation and, again, there is no increase of energy
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Figure 2. Temporal evolution of the spectra of the fuel vapour mass fraction in (a) and (c), and the
oxidizer mass fraction in (b) and (d): (c, d) for the base case, and (a, b) for the respective evaporating
(non-reacting) case.

at high wavenumbers. The effect of the fuel vapour on the oxidizer during the early
stages of evaporation is evident from the local increase in the spectrum of the oxidizer
at St = 2.2. This local peak, around K ' 17, corresponds to the high-energy portion
of the fuel vapour spectrum at St = 2.2. It is also noted, at St = 14, that for reacting
droplets the spectra of the fuel vapour and the oxidizer are more similar as compared
to those in the evaporating case. This suggests that reaction tends to diminish the
structural differences between the fuel vapour and the oxidizer. Further evidence for
this observation is provided in § 4 where we analyse the evolution of the Taylor
microscale for these fields.

The assumption of Stokesian drag requires droplet sizes smaller than the smallest
scales of the turbulence such that the flow field around each droplet can be considered
homogeneous. At the same time, however, the size of the droplet must be much larger
than the mean free path of the molecules of the carrier phase in order to consider a
continuum around the droplet. Referring to an analysis by Lumley (1978), Elghobashi
& Truesdell (1992) argue that the use of the Stokes approximation for the motion of
a single droplet is justified if dd/η <

1
6

and Red < 0.5. Figure 3 shows that 〈〈Red〉〉 (the
notation 〈〈 〉〉 indicates the Lagrangian ensemble average over the number of droplets)
is less than ∼ 0.6 throughout the simulations and closely satisfies the criterion. The
droplet Reynolds number starts from zero (as a result of the imposed initial condition)
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normalized by the Kolmogorov length scale and (b) the droplet time constant normalized by the
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and reaches a peak value around St = 2. It is suggested in the literature (e.g. Riley
& Patterson 1974; Elghobashi & Truesdell 1992) that after the peak time the effects
of the initial conditions are significantly diminished and the results may be used for
statistical analysis. This is another reason for allowing the droplets to evaporate (and
react) at and after St = 2 in these simulations.

The temporal variation of the minimum and maximum values of dd/η is portrayed
in figure 4(a) for two reacting cases. It is observed that the value of dd/η for the
base case also closely satisfies the above condition. For the case with smaller droplets,
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however, dd/η falls slightly below the suggested value of 1
6

towards the end of the
simulation. To avoid very small droplets, a criterion was set in the code to remove
the droplets when their diameters fall below a certain value. These droplets are not
replaced and do not participate in the calculation of the dispersed-phase statistics.
Figure 4(a) clearly shows that, for the case with τd0 = 0.5τd0b, the minimum value
of dd/η does not change after St = 12 as a result of the application of the above
criterion for the minimum droplet size. Previous studies (e.g. Wang & Maxey 1993)
show that the effects of the preferential distribution are enhanced for droplet time
constants of the order of the Kolmogorov time scale, τk . This has been the primary
criterion for choosing the initial values of the droplet time constant for this study.
Figure 4(b) shows that 0.24 < τd/τk < 2.46 for these simulations.

Other statistics of the two-phase flow have also been carefully examined for the
assessment of the accuracy of the generated data. The analysis of the results indicated
that the mean turbulent Mach number is always less than 0.2 and the flow is free
of shocklets. The value of the integral length scale was also monitored for all the
simulations and never exceeded 6% of the size of the simulation box. This indicates
that the simulated flow remains homogeneous for all of the cases.

4. Droplet size, fuel vapour, and oxidizer
In this section, the droplet size distribution and mass fractions of the fuel vapour

and oxidizer are investigated. Since all of these quantities depend on the amount of
the evaporated mass, it is instructive to first consider the variations of the Lagrangian
average mass of the droplets. The temporal variation of this quantity, normalized
by its initial value, is shown in figure 5(a) for various cases. It is observed that the
evaporation rate decreases with the increase of the mass loading ratio, as a result of
the increase in the total mass of the vapour in the carrier phase. The decrease of the
droplet time constant, however, enhances the evaporation rate due to the increase in
the surface area to volume ratio. Note that, during the final stages of the simulation
with τd0 = 0.5τd0b, the rate of evaporation decreases abruptly. As was discussed in § 3,
this is due to the fact that some of the droplets are fully (within the set criterion)
evaporated and are removed from the simulation. Figure 5(a) also shows that the
decrease of either the Damköhler number or the heat release coefficient decreases the
rate of evaporation as a result of a decrease in the energy released by combustion.
In all of the cases, a portion of the evaporated mass participates in the chemical
reaction with the oxidizer. Figure 5(b) shows the temporal variation of the remaining
(unburnt) mass of the fuel vapour, mfv , divided by the total evaporated mass. It is
noted that the ratio decreases as the reaction proceeds for all of the cases. However,
this should not imply that the mean fuel vapour mass fraction also decreases in time;
variations of 〈Yfv 〉 will be discussed later in this section. It is interesting that, despite
the large variations in the evaporation rate, as noted in figure 5(a), the quantity
〈mfv 〉/〈〈md0 − md〉〉 remains closely the same for all of the cases but that with small
Damköhler number.

The modelling of spray combustion often involves an approximation for the size
of the droplets. One approach is to describe the droplet size distribution by known
probability density functions (p.d.f.s). The droplet size distribution is investigated here
by considering the temporal variation of various moments shown in figure 6. These
moments along with the mean droplet size, obtained from figure 5(a), can be used
to approximate the p.d.f. of the droplet size at various times. A close inspection of
figure 6(a) shows that with the progress of the chemical reaction the normalized root
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Figure 5. Temporal variation of (a) the mass of the droplets normalized with its initial value and
(b) the remaining mass of the fuel vapour normalized with the total evaporated mass.

mean square (r.m.s.) of the droplet diameter, ddrms/dd0, increases in time for all of
the cases. The skewness and kurtosis values in figure 6(b) suggest that the long time
distribution of the droplet size may be closely approximated with a Gaussian p.d.f.
for all of the cases. The increase of the mass loading ratio increases the r.m.s. of
the droplet diameter while shifting its skewness from positive to negative at long
times. The decrease of the initial droplet size also significantly increases the r.m.s.,
in agreement to the results shown in figure 4(a) which indicate a larger difference
between the minimum and maximum values of the droplet diameter in the case with
τd0 = 0.5τd0b. Changes in either the Damköhler number or the heat release coefficient
appear to have little effect on the droplet size distribution.

In order to study the droplet size distribution in connection with various Eulerian
fields, it is necessary to provide a Eulerian description for the density of the droplets.
For non-evaporating droplets (or solid particles) it is customary (e.g. Squires & Eaton
1991b) to use the ‘droplet number density’, nd, calculated in a manner similar to that
used for the source term in the carrier-phase equations; i.e. nd is defined as the number
of droplets within the cell surrounding each Eulerian grid point. This definition does
not carry any information on the mass of the droplets. Therefore, for evaporating (and
reacting) droplets we also introduce the ‘droplet Eulerian density’, Cd =

∑nd md/ρδV
which accounts for the mass of the droplets. Note that Cd is normalized such that it
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describes the ratio of the total mass of the droplets to the mass of the carrier phase
within a cell. Therefore, Cd may also be interpreted as a Eulerian description for
the mass loading ratio. The relationship between the droplet number density and the
droplet Eulerian density can be investigated by considering their joint p.d.f. in figure 7
for the case with the highest mass loading ratio (Φm0 = 4Φm0b) at St = 14. A similar
behaviour was observed for other cases. The high peak of the p.d.f. at the origin
indicates that a large portion of the domain is free of droplets. This is due mainly to
the preferrential accumulation of the droplets in high strain rate regions of the flow
as shown previously (Wang & Maxey 1993; Eaton & Fessler 1994) and will also be
addressed in § 5. As one would expect, figure 7 indicates that the probability of finding
one droplet per cell is larger than that of finding two or more droplets per cell.

We begin our discussion on the reactants by considering the joint p.d.f.s of the
fuel vapour mass fraction with the droplet number density and the droplet Eulerian
density as the droplets are the source for the fuel vapour. These p.d.f.s, shown in
figure 8 for the case with the highest mass loading ratio, indicate the existence of a
considerable probability of finding fuel vapour in the regions of the flow that do not
contain any droplet. This can be an indication that the diffusion time for the fuel
vapour is relatively small or that the time scale for the motion of the droplets is small
enough, compared to the time scale of reaction, such that before the fuel vapour is
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completely consumed by reaction some of the droplets have left the region. These
hypotheses gain some support from the relatively small values used for the Scmidt
number and the Damköhler number, and from figure 4(b) which shows that the
droplet time constant is of the same order of magnitude as that of the smallest scales
of the turbulence. Nevertheless, a close inspection of figure 8 reveals that the peak
of the p.d.f. moves towards smaller values of Yfv as nd (or Cd) decreases. Therefore,
the total amount of the fuel vapour in the droplet-free regions of the flow must
be somewhat small in comparison to that in the regions occupied by the droplets.
Figure 8 also shows that the p.d.f. is more diffused along the Cd-axis compared to
the nd-axis and the relative height of the p.d.f. in the droplet-free regions of the flow
increases when the joint p.d.f. with Cd is considered.

The reaction rate strongly depends on the correlation between the mass fractions
of the fuel vapour and the oxidizer, and an effective means for increasing the rate
of reaction is by improving the mixing of the two species. The issue of mixing can
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be investigated by considering the joint p.d.f. of the mass fractions. In non-premixed
reaction, where species are initially segregated, the joint p.d.f. is represented by two
seperate peaks. Previous investigations in single-phase flows (e.g. McMurtry & Givi
1989) indicate that turbulence motions are capable of enhancing the rate of mixing
significantly such that the joint p.d.f. evolves into a single-peak p.d.f. at which point
the species are considered to be mixed. The joint p.d.f.s of Yfv and Yox are shown
in figure 9 for various cases at St = 14. A comparison of these p.d.f.s with those
found in the literature for premixed reaction (in single-phase flow) suggests that the
fuel vapour and the oxidizer are well mixed at this stage and the reaction may be
categorized as premixed. It is noted that the joint p.d.f. is concentrated in the small-Yfv

region as the amount of the vapour in the carrier phase is small in comparison to
the mass of the oxidizer (and the product). The joint p.d.f. moves towards smaller
values of Yox when the mass loading ratio is increased (figure 9b) or the droplet time
constant is decreased (figure 9c). An opposite effect is observed with the decrease of
the Damköhler number. It is also noted that the p.d.f. moves towards larger values
of Yfv with the increase of the mass loading ratio. This could indicate that the rate of
production of the fuel vapour by evaporation is larger than its rate of consumption
by reaction. This issue can be further investigated by considering the evolution of the
mean fuel vapour mass fraction.

Figure 10 portrays the temporal variations of the mean fuel vapour mass fraction
and the mean oxidizer mass fraction. The general observation is that the mean mass
fraction of the fuel vapour increases in time whereas, as expected, the mean oxidizer
mass fraction decreases. An exception is the case with smaller droplet time constant
which shows a decreasing trend for 〈Yfv 〉 at the end of the simulation. As was pointed
out earlier, this is due to the fact that most of the droplets are evaporated at this
stage and do not contribute to the production of the fuel vapour. The increase of
〈Yfv 〉 is despite the consumption of the fuel vapour by reaction, and indicates that
the rate of production is larger than the rate of consumption of the vapour. It must
be emphasized that the variation of the fuel vapour mass fraction strongly depends
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on the values used for various parameters. Nevertheless, it is interesting to note that
the temporal variation of 〈Yfv 〉 and 〈Yox 〉 is nearly linear at long times (again with
the exception of the case with τd0 = 0.5τd0b). Figure 10(a) indicates that either the
increase of the mass loading ratio or the decrease of the droplet time constant results
in the increase (decrease) of the fuel vapour (oxidizer) mass fraction at all times. By
decreasing the reaction rate, the decrease of Da results in the increase of the fuel
vapour mass fraction despite the smaller rate of evaporation. Finally, an increase of
the heat release coefficient by 50% does not seem to have a significant effect on the
mean mass fraction of either reactant.

The temporal evolution of the r.m.s. of the mass fractions, Yfvrms = [〈(Yfv −
〈Yfv 〉)2〉]1/2 and Yoxrms = [〈(Yox − 〈Yox 〉)2〉]1/2, is shown in figure 11. It is clear that
Yfvrms is much more sensitive to various parameters than is Yoxrms . The r.m.s. of the
vapour mass fraction rapidly increases during the early times as the evaporation rate
is initially large and results in the increase of the fuel vapour mass fraction near
the droplets. Since the droplets are not uniformly distributed, Yfvrms starts to increase
during the early stages of evaporation. This is also due to the fact that the reaction
zone (see § 5) is not spatially uniform and results in a non-uniform consumption of
the fuel vapour. At long times, turbulent motions distribute the fuel vapour more
evenly in space and result in a smaller rate of increase for Yfvrms . The increase of
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the mass loading ratio increases Yfvrms and causes an overshoot after the initial rapid
increase. It is interesting to note that Yoxrms always decreases in time even when Yfvrms

is increasing.
To analyse the p.d.f.s of the mass fractions, in figure 12 we consider the skewness

and kurtosis of these variables. This analysis could be of great interest in the modelling
of the mass fractions during a combustion process. The skewness and kurtosis are
calculated for the Reynolds-average fluctuating component of the mass fractions,
Y ′fv = Yfv − 〈Yfv 〉 and Y ′ox = Yox − 〈Yox 〉. Figure 12(a) shows that during the early
stages of evaporation and reaction the skewness and kurtosis values of the fuel vapour
mass fraction significantly deviate from those for a Guassian p.d.f. However, these
values become close to those of a Gaussian distribution within a short time, as a
result of the turbulent motions of the carrier phase. This behaviour is in agreement
with the evolution of the power spectra of Y ′fv in figure 2. The increase of the mass
loading ratio decreases the skewness such that there is a higher probability for finding
fuel vapour mass fractions smaller than the mean for the case with Φm0 = 4Φm0b.
Figure 12(b) indicates that the skewness and kurtosis of the oxidizer mass fraction
are not influenced by the presence of the fuel vapour and remain very close to those
for a Gaussian p.d.f during the early stages of evaporation and reaction for all of the
cases. At long times, however, it appears that the oxidizer is significantly affected by
the chemical reaction and the kurtosis values increase with either the increase of the
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Figure 12. Skewness and kurtosis of (a) the fuel vapour and (b) the oxidizer mass fractions.
Symbols as figure 10.

mass loading ratio or the decrease of the droplet time constant. It is not clear from
these simulations how the p.d.f.s of the oxidizer mass fraction will behave at longer
times (St > 14). However, it appears that with the presence of a sustained chemical
reaction the p.d.f.s of the oxidizer mass fraction cannot be approximated by a specific
type of distribution.

More insight into the turbulence structure of the reactants is gained by studying
the temporal evolution of the Taylor microscale λfv and λox , and the small-scale
dissipation εfv and εox for the fuel vapour and the oxidizer mass fractions, respectively,
in figure 13. The microscales are defined as λfv = [12Y ′2fv /(RefScεfv )]1/2 and λox =

[12Y ′2ox/(RefScεox )]1/2, similarly to the microscale for a scalar (Leonard & Hill 1991),
and are normalized with the length of the simulation domain, 2π. The results in
figure 13(a) suggest that the mass fraction fields are mainly composed of small-scale
structures compared to the size of the domain. The microscale of the fuel vapour is
smaller than that of the oxidizer throughout the simulations. However, figure 13(a)
shows that chemical reaction results in the decrease of the Taylor microscale for both
species, although the impact is much larger on the oxidizer. It may be concluded
from the results in figure 13(a) that chemical reaction tends to modify the turbulence
structure of the oxidizer such that the microscales of the two species become closer.
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is shown in figure 13(b). For the non-reacting case, the dissipation rate decreases to
the same small value for both species at long times. The chemical reaction, however,
results in the increase of the dissipation rate of the fuel vapour mass fraction at long
times. This is due mainly to the increase of the fluctuations of the fuel vapour mass
fraction which results in a larger energy transfer from high-energy scales to small
scales where dissipation occurs.

A convenient approach usually adopted for theoretical analysis of reaction is via
the concept of the ‘mixture fraction’ defined as (Bilger 1980)

ξ =
rYfv − Yox + 1

1 + r
. (22)

In single-phase flows, without any production of fuel or oxidizer, ξ behaves like a
‘conserved scalar’ as there is no source term in its transport equation. For the present
case, however, ξ as defined by (22) is not conserved and increases with time as
witnessed from figure 14. To explain the behaviour observed in the figure, a transport
equation is derived for ξ using (2), (5), and (6). For homogeneous shear flow and in
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deforming coordinates, this transport equation reads

∂

∂t
(ρξ) + Qji

∂

∂xj
(ρuiξ) =

QijQkj

RefSc

∂2ξ

∂xi∂xk
+Sm. (23)

Equation (23) resembles the equation for a conserved scalar except for the droplet
mass source term, Sm. With droplets evaporating, this term is always positive and
results in the increase of ξ, in agreement to the results in figure 14.

For homogeneous flows, a relationship between the mean value of ξ and the
mean carrier-phase density may be obtained by averaging (23). After some algebraic
manipulations and by assuming that 〈ρξ〉 ' 〈ρ〉〈ξ〉, the following relation is obtained:

〈ξ〉 ' 〈ρ〉 − 〈ρ0〉
〈ρ〉 , (24)

where ρ0 is the initial value of the carrier-phase density. Figure 14 shows that (24)
is in agreement with the results of the numerical simulations. For an infinitely fast
reaction with r = 1, (22) yields the stoichiometric value ξ = 0.5. Figure 14 indicates
that the average value of ξ increases in time since the total evaporated mass of the
fuel increases; however, it never reaches 0.5 as the initial mass loading ratio is smaller
than unity. The maximum of ξ was monitored for all the reacting cases and indicated
values less than 0.5 for all times.

5. Reaction rate and zone
The results presented in § 4 indicate that in analysing the DNS results special

attention must be paid to various mechanisms influencing the mixing of the fuel
vapour and the oxidizer. The extensive previous studies conducted on single-phase
turbulent reacting flows have revealed the important role of turbulence mixing in
enhancing the rate of reaction. In two-phase reacting flows, the dispersion of the
droplets may also be considered as an effective means for improving and/or controlling
the mixing process. The most important issue in this consideration is the preferential
distribution of the droplets (Wang & Maxey 1993; Eaton & Fessler 1994) and the
influence of the large scales of the flow on the motion of the droplets. These aspects
of the two-phase turbulent reacting flow are explored in this section via statistical
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Figure 15. Expected value of the droplet Eulerian density conditioned on the reaction rate:
τd0 = 0.5τd0b at St = 12, all other cases at St = 14.

analysis. The primary focus of the investigation, however, is on the reaction rate and
reaction zone due to their significance in the modelling of reacting systems.

Figure 15 portrays the variations of the normalized conditional expectation
〈Cd|ω〉/〈Cd〉 with ω/〈ω〉, where ω = ρ2DaYfvYox is the reaction rate. All of the
results are at St = 14 except for the case with τd0 = 0.5τd0b which is presented at
St = 12. It is clearly seen in the figure that the regions of high reaction rate are asso-
ciated with the regions of high droplet concentration. This is due mainly to the fact
that droplets are the source for the fuel vapour. Since the initial mass loading ratio
for these simulations is less than unity while the stoichiometric coefficient is r = 1, the
possibility of encountering fuel-rich regions must be small. Therefore, the fuel vapour
receives enough oxidizer immediately after leaving the droplet and reaction starts in
the neighbourhood of the droplet. For mass loading ratios significantly higher than
unity, the correlation between the reaction rate and the droplet concentration could
be expected to be smaller. However, for the present cases Φm0 6 0.8 and figure 15
shows that the expected value of Cd conditioned with the reaction rate increases
with the increase of the mass loading ratio. This may be explained by noting from
figure 5 that an increase of the mass loading ratio is accompanied by a decrease in
the average mass evaporated by each droplet. Further, the increase of Φm0 results in
a more uniformly distributed fuel vapour due to the presence of a larger number of
droplets. This increases the possibility of finding enough oxidizer in the vicinity of
the droplets and facilitates the chemical reaction. For similar reasons the decrease
of the droplet time constant also results in the increase of 〈Cd|ω〉/〈Cd〉. Figure 15
also shows a substantial increase in the expected value of Cd with the decrease of the
Damköhler number, despite the fact that smaller values of the Damköhler number
correspond to a slower reaction and combustion may continue after the droplets have
left the region. This again has to do with the decrease of the average mass evaporated
by each droplet when the Damköhler number is decreased. Finally, it appears from
the figure that the increase of the heat release coefficient by 50% does not significantly
affect the expected value of Cd.

The effect of the small scales of the flow on the reaction rate is considered next. A



Reacting droplets in homogeneous shear turbulence 25

4

3

2

1

0
–10 –5 0 5 10

2.0

1.5

1.0

0.5

0
–10 –5 0 5 10

©
n d 

|I
I dª

/©
n dª

©
ω

|I
I d

ª
/©

ω
ª

IId/IIdrms

(a)

(b)

Figure 16. Expected value of (a) the droplet number density and (b) the reaction rate conditioned
on IId: τd0 = 0.5τd0b at St = 12, all other cases at St = 14. Symbols as figure 15.

convenient parameter for distinguishing various regions in the flow is

IId ≡ −1

2

(
∂ui

∂xj

∂uj

∂xi

)
= − 1

2

(
ζ2 − 1

4
ϑiϑi
)
, (25)

where ζ2 denotes the magnitude of the strain-rate tensor. In incompressible flows, IId
represents the second invariant of the deformation tensor, ∂ui/∂xj (see e.g. Squires &
Eaton 1990). As pointed out by Mashayek (1998a), for a compressible flow, IId does
not have an analogous physical significance; however, it may still be used for flow
characterization as the negative and positive values of IId correspond to high-strain-
rate and high-vorticity regions of the flow, respectively. It must be emphasized that
the parameter IId is defined based on fluctuating velocities, and does not take into
account the large-scale motions due to mean shear. The effect of the mean shear on
the reaction zone is discussed later in this section.

Figure 16 shows the variation of 〈nd|IId〉/〈nd〉 and 〈ω|IId〉/〈ω〉 with IId/IIdrms

for various cases. Again, all of the results are at St = 14 except for the case with
τd0 = 0.5τd0b which is considered at St = 12. Similarly to previous observations in
incompressible flows laden with solid particles, figure 16(a) shows that the droplets
exhibit a tendency for accumulating in high-strain-rate (negative IId) regions of the
flow. The previous studies have also shown that the preferential distribution depends
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Figure 17. Contours of the joint p.d.f. of the evaporation rate and the droplet time constant at
St = 14. (a) The base case; contour levels from 9.63 to 57.8 with increment 9.63. (b) Φm0 = 4Φm0b;
contour levels from 2.61 to 15.66 with increment 2.61. (c) Da = 0.2Dab; contour levels from 7.1 to
42.6 with increment 7.1. (d) Ce = 1.5Ceb; contour levels from 8.67 to 52.0 with increment 8.67. The
highest value belongs to the innermost contour.

on the size of the droplets and is enhanced for droplet time constants of the order
of the Kolmogorov time scale. According to figure 4(b), the mean value of τd/τk is
∼ 0.5 for the case with τd0 = 0.5τd0b at St = 12, and ∼ 1.15 for the case with the
larger initial droplet size at St = 14. Figure 16(a) clearly shows that this difference in
the droplet size has resulted in a decrease in the preferential distribution for the case
with τd0 = 0.5τd0b. Changes in other parameters do not seem to have a significant
effect on the preferential distribution of the droplets. This suggests that the primary
parameter influencing the distribution of the droplets is the ratio of the droplet time
constant and the Kolmogorov time scale. Figure 16(b) shows that the reaction rate
is (moderately) higher in high-strain-rate regions. This should be mainly due to the
larger concentration of the droplets there – note that the correlation between the
reaction rate and high-strain-rate regions is smaller for the case with τd0 = 0.5τd0b.
Another possible reason for this phenomenon is that based on the continuum theory
coexistence of the reactants is a necessary condition for chemical reaction. This is
achieved by molecular diffusion which can be enhanced by bringing the isoscalar
lines closer in high-strain-rate regions. This has been observed in previous studies of
single-phase reacting flows (see e.g. Leonard & Hill 1992). Figure 16(b) also shows a
decrease in the correlation between the reaction rate and high-strain-rate regions for
the case with smaller Damköhler number. This could be attributed to the broadening
of the reaction zone at small Da that will be discussed later in this section.

Due to the variations in the size of the droplets, simulations with reacting droplets
provide a convenient means to investigate the effects of the droplet size on the
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rates of evaporation and reaction. Figure 17 shows the contours of the Lagrangian
joint p.d.f. of the normalized droplet time constant τd/〈〈τd〉〉 and the normalized
evaporation rate [(dτd/dt)/τd]/〈〈[(dτd/dt)/τd]〉〉. A variety of cases are considered at
St = 14. It is observed that in all of the cases there is a higher probability to attain
larger evaporation rate (per mass of the droplet) for smaller droplets. This is because
smaller droplets have a larger surface area to volume ratio. Since the evaporated mass
is proportional to the surface area, smaller droplets evaporate more mass per volume
and (dτd/dt)/τd increases with the decrease of the size of the droplet. Nevertheless,
it is noted from figure 17 that a range of evaporation rates is associated with each
droplet size. This range widens with the increase of the mass loading ratio or the
decrease of the Damköhler number. The change in the heat release coefficient does
not show a significant effect.

To investigate the correlation between the droplet size and the reaction rate, in
figure 18 the contours of the Lagrangian joint p.d.f. of τd/〈〈τd〉〉 and ω/〈〈ω〉〉 are
presented for the same cases and time as those in figure 17. According to figure 18,
there is a clear tendency for high reaction rates to occur in the regions of the
flow containing larger droplets. In order to find the reason for this phenomenon, in
figure 19 the contours of the joint p.d.f.s of the droplet time constant with the fuel
vapour mass fraction and the oxidizer mass fraction are shown for the case with
the highest mass loading ratio; similar trends were observed for other cases. These
variables are considered as they directly appear in the relation for the reaction rate:
ω = ρ2DaYfvYox . A glance at figure 19 makes it clear that only the fuel vapour
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mass fraction exhibits a behaviour similar to that of the reaction rate. Although
figure 17 shows that the rate of evaporation per unit mass of the droplet is larger for
smaller droplets, the total evaporated mass is larger for larger droplets. This increases
the fuel vapour mass fraction in the vicinity of larger droplets and results in the
increase of the reaction rate. It is also noted in figure 19(b) that the oxidizer mass
fraction has smaller values in the neighbourhood of larger droplets. This is due to
larger reaction rates which enhance the consumption of the oxidizer in the regions
near larger droplets. Since, unlike the fuel vapour, there is no source for generating
oxidizer, the mass fraction of the oxidizer decreases as the reaction proceeds.

Next, we study the reaction zone by considering the contours (colour shading) of
the reaction rate shown in figure 20 for various cases. These contours are shown
in two planes of the flow, (x, y) and (y, z) (x ≡ x1, y ≡ x2, z ≡ x3), while the third
coordinate is equal to π (half of the simulation domain size). The colour shading
changes from red to dark blue as the reaction rate varies from the highest to the
lowest values. Superimposed on the contours of the reaction rate are the droplets at
their instantaneous locations. The droplets used in these figures are those contained in
a slice of the flow that has the thickness of one cell centred at the same plane as that
considered for the reaction rate. It must be mentioned that the droplets are not shown
in their actual sizes and collision among the droplets is very rare in these simulations.
The results in figure 20 are in agreement with those of figure 15 in that the reaction
rate is higher in the regions of the flow containing more droplets. Further inspection
of figure 20 reveals that the reaction zone is more organized in the direction of the
mean flow which only has the component U1. This is observed in the (x, y)-plane
(figure 20b–f) for all of the cases. In contrast, figure 20(a) shows that the reaction
zone in the (y, z)-plane is organized according to the preferential distribution of the
droplets in high-strain-rate regions of the flow. The preferred organization of the
reaction zone in the presence of a homogeneous shear has been previously studied in
single-phase flows (Nomura & Elgobashi 1992; Leonard & Hill 1992). These previous
studies show that the intense reaction zone is associated with various vortex structures,
and that scalar gradients tend to align with the direction of the most compressive
principal strain rate. However, as demonstrated by figure 20, in two-phase flows the
influence of the mean flow on the structure of the reaction zone is more pronounced
due to the alignment of the droplets with the mean flow direction. A comparison of



Reacting droplets in homogeneous shear turbulence 29

y y

y y

(a) (b)
z x

y

(c) (d )
x x

(e) ( f )
x x

y

Figure 20. Contour plots (colour shadings) of the reaction rate and the instantaneous droplet
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Part (d) at St = 12, all other parts at St = 14.

figure 20(e) and (c) shows that the reaction zone is broader for the case with smaller
Damköhler number. This is in agreement with previous observations in single-phase
reacting flows (Swaminathan et al. 1996). A close inspection of figure 20 indicates
that some of the droplets are located in regions of low reaction rate. Further analysis
of the dispersed phase via consideration of the size of the droplets, revealed that these
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Figure 21. The p.d.f.s of the cosine of the angle between the coordinate axes and the gradient
of the reaction rate at St = 14. (a) The base case in various directions. (b) Various cases in the
x1-direction.

droplets have small sizes and do not significantly contribute to the production of the
fuel vapour. This analysis also showed that the regions of intense reaction rate are
associated with larger droplets.

To further investigate the effects of the large scales of the flow on the reaction
zone, the alignment of the gradient of the reaction rate, ∇ω, with coordinate axes, xi,
is considered. Figure 21(a) shows the p.d.f. of cos θi, where θi is defined as the angle
between ∇ω and xi, for the base case at St = 14. The figure clearly shows that the
gradient of the reaction rate tends to align perpendicularly to the direction of the
mean flow as the highest probability is around cos θ1 = 0 and cos θ2 = ±1. This is in
agreement with the results in figure 20 showing that the contours of the reaction rate
are mostly aligned with the mean flow direction, x1. The p.d.f. for i = 3 also verifies
the results in figure 20 that in the (y, z)-plane there is no preferred direction for the
reaction zone. The effects of various parameters on the organization of the reaction
zone with the mean flow direction are portrayed in figure 21(b) which shows the p.d.f.
of cos θ1 at St = 14. It is observed that the alignment is enhanced with the increase of
the mass loading ratio or the decrease of the droplet time constant. The decrease of
the Damköhler number also results in the increase of the alignment of the reaction
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the fuel vapour mass fraction, in (a, c), and the oxidizer mass fraction, in (b, d), at St = 14: (a, b) the
evaporating case, (c, d) the base case.

zone with the mean flow direction. This may seem inconsistent with the fact that the
time scale of the reaction increases with the decrease of Da and could provide the
droplets with more time to leave the reaction zone, thus decreasing the correlation
between the reaction zone and the droplet distribution. However, the decrease of the
evaporation rate, associated with the decrease of the Damköhler number, provides
more oxidizer in the vicinity of the droplets and facilitates the chemical reaction (see
the discussion accompanying figure 15). In fact, all of the cases that exhibit a stronger
alignment evaporate less mass per droplet compared to the base case.

Figure 22 provides some insight into the effects of the mean shear on the mass
fractions of the fuel vapour and the oxidizer by showing the p.d.f.s of the cosine of
the angle between the gradient of these variables and the coordinate axes. Here, both
the base case and its corresponding evaporating (non-reacting) case at St = 14 are
considered in order to also assess the role of the chemical reaction. Figure 22(a) for
the non-reacting case shows that the fuel vapour is largely aligned with the direction
of the mean flow. This could be due to the effects of the mean flow both on the fuel
vapour as a scalar field as well as on the droplets as a dispersed phase. Since no
simulation of single-phase flow has been performed in this study, it is not possible
to clearly distinguish between these two mechanisms. However, it can be stated that,
due to the presence of the droplets, the tendency of the fuel vapour to align with the
direction of the mean flow should be larger in two-phase flow than in single-phase
flow. Some support for this statement can be provided by comparing the p.d.f.s for
the oxidizer in the same case with those of the fuel vapour. Figure 22(b) clearly shows
that the alignment of the oxidizer with the mean flow is smaller than that of the
fuel vapour. Since the oxidizer is not as strongly affected by the droplets as the fuel
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vapour, the difference observed between figures 22(a) and 22(b) may be attributed
to the effects of the droplets. The scenario is significantly changed in the presence
of the chemical reaction. Figures 22(c) and 22(d) show that the p.d.f.s for the fuel
vapour and the oxidizer in the reacting case are much closer compared to those in
the non-reacting case. Therefore, chemical reaction decreases the alignment of the
fuel vapour with the mean flow direction while increasing that of the oxidizer. This
is in agreement with the discussion in § 4 that chemical reaction tends to bring the
fuel vapour and the oxidizer closer. It is also noted in figure 22 that the effects of
chemical reaction on the p.d.f.s in the i = 3 direction is not significant.

To investigate the effects of various parameters on the alignment of the reactants
with the mean flow direction, in figure 23 we consider the p.d.f. of cos θ1 at St = 14. It
is observed that the height of the p.d.f. for both reactants increases with the increase
of the mass loading ratio or the decrease of the droplet time constant. The decrease of
the Damköhler number increases the alignment of the fuel vapour while decreasing
the alignment of the oxidizer. This is expected as the alignment of the oxidizer is
through reaction which becomes weaker with the decrease of Da. The change in the
heat release coefficient does not show any significant impact on the alignment. With
the exclusion of the case with smaller Da, the trends in figure 23 are in agreement
with those in figure 15. A comparison of the two figures shows that an increase in
the correlation between the reaction rate and the droplet density corresponds to an
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increase in the alignment of the reactants with the mean flow direction. As was argued
earlier, this behaviour can be explained by considering the changes in the evaporation
rate in various cases.

6. Summary and concluding remarks
Evaporation and combustion of fuel droplets dispersed in a compressible oxidizer

gas are investigated while considering a two-way coupling between the phases. Direct
numerical simulation is used to solve for the mixture of the oxidizer gas, the fuel vapor,
and the product in the Eulerian frame; the dispersed phase is treated in the Lagrangian
frame. The problem is considered in the context of homogeneous shear flow at low
Mach numbers without the presence of shocklets. It is assumed that combustion
takes place in the vapour phase and can be described by a single-step, second-order,
irreversible reaction. Several cases are simulated to investigate the effects of the mass
loading ratio, the droplet time constant, the Damköhler number, and the heat release
coefficient on the droplet size, the reactants, and the reaction rate and zone.

The analysis of the flow statistics, including various power spectra, indicates that
the Eulerian fields are well-resolved and that the assumptions adopted in the formu-
lation of the dispersed phase are satisfied throughout the simulations. The rate of
evaporation varies for different cases; however, the size of the droplets may be reason-
ably described by a normal distribution, after the effects of the initial conditions have
subsided. The increase of the mass loading ratio increases the r.m.s. of the droplet
diameter while decreasing its skewness to negative values. The joint p.d.f. of the fuel
vapour mass fraction and the droplet number density shows the presence of the fuel
vapour in the regions of the flow that do not contain any droplets. The analysis of
the joint p.d.f. of the fuel vapour and the oxidizer mass fractions indicates that the
reaction can be categorized as premixed. Despite the chemical reaction between the
fuel vapour and the oxidizer, the mean mass fraction of the fuel vapour increases
in time for the parameter values used in the simulations. By decreasing the reaction
rate, the decrease of the Damköhler number results in the increase of the fuel vapour
mass fraction despite a smaller rate of evaporation. The r.m.s. of the fuel vapour mass
fraction exhibits an increasing trend for most of the time whereas that of the oxidizer
decreases continuously. The difference between the Taylor length scale of the fuel
vapour and that of the oxidizer decreases in time in the presence of the chemical reac-
tion. This is not the case when the droplets are only evaporating without combustion.

The reaction rate is higher in the regions of the flow with larger droplet concentra-
tion. There is also a tendency for higher reaction rates to occur in the regions of the
flow with high strain rate. The evaporation rate (per mass of the droplet) is higher
for smaller droplets whereas the opposite is true for the reaction rate. The latter is a
result of the higher values of the fuel vapour mass fraction in the regions of the flow
containing larger droplets. The contour plots of the reaction rate in various planes of
the flow indicate that the reaction zone is aligned with the direction of the mean flow.
This is due mainly to the effects of the mean shear on the dispersed droplets, and is
also verified by the analysis of the p.d.f.s of the angle between the gradient of the reac-
tion rate and the coordinate axes. The alignment is enhanced with the increase of the
mass loading ratio or the decrease of the droplet time constant. The decrease of the
Damköhler number also results in the increase of the alignment of the reaction zone
with the mean flow direction. Similar p.d.f.s for the fuel vapour and oxidizer mass frac-
tions show that, without the chemical reaction, the fuel vapour is more aligned with the
mean flow direction than is the oxidizer. The chemical reaction decreases (increases)
the alignment of the fuel vapour (oxidizer) with the direction of the mean flow.
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From a modelling standpoint, the results presented here can be very useful for
model development and may also be considered for model assessment. However, it
must be emphasized that some of the trends observed in the results strongly depend
on the specific values used for various parameters, and should by no means be
considered ‘universal’. This is in particular true for the values of the Damköhler
number and the heat release coefficient which greatly affect the rate of reaction
and the variations of the temperature. The behaviour of the two-phase turbulent
reacting flow depends on the time scales of turbulence, evaporation, reaction, and
droplet dispersion. The current limitation in computational resources does not allow
a complete investigation of the problem while considering a wide range of variations
for various parameter values. Therefore, future use of DNS for two-phase turbulent
reacting flows is recommended.
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